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formance and structural integrity data. The filling times,
opening shock factors, stability angles, and projected areas of
the nylon and Kevlar parachutes were approximately equal for all
test conditions. The Kevlar parachutes generated approximately
50 percent higher deployment forces, 22 percent lower opening
forces, and 18 percent lower steady state drag forces than the
nylon parachutes. Linear relationships were established between
parachute openind\ forces and the ultimate loads in nylon
suspensi:Z lines and nylon and Kevlar horizontal ribbons. For

approximafely equal strength hemisflo parachutes, the weights of
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| new high strength, low modulus Kevlar materials. The deployment
control break tie de§ign calculation technique p&eaented in this
report has been shown to be a satisfactory method which can be
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Kevlar hemisflo parachufel at supersonic speeds and high dynamic
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FOREWORD

This report describes an in-house program conducted

by the Recovery and Crew Station Branch (FER), Vehicle Fquipment
Division (FE), Air Force Flight Dynamics Laboratory, Air Force
Wright Aeronautical Laboratories, Wright-Patterson Air Force
Base, Ohio, under Projecc 2402, "Vehicle Equipment Technology,"
Task 240203, "Aerospace Vehicle Recovery and Escape Subsystems,"
Work Unit 24020313, "Development and Evaluation of Kevlar-29
Material for Weapon System Parachute Recovery Applications."

The work reported herein was performed during the period
1 June 1967 to 30 June 1977, under the direction of the author,
Mr. Charles A. Babish III (AFFDL/FER), project engineer. The
report was released by the author in November 1977.

The author wishes to express his appreciation to
Mr. J. Pat Brown and Mr. Floyd Amburgey of the 6585th Test Group,
Holloman Air Force Base, New Mexico, for their successful
management of all aspects of the track tests performed under
this program. Special acknowledgment is made to Mr. Philip A.
Graf and other personnel at the University of Dayton Research
Institute, Dayton, Ohio, for their assistance in data reduction
and report preparation. Parachute fabrication, preparation,
and packing were performed at the Air Force Aeronautical
Systems Division Parachute Shop, WPAFB, Ohio, under the direction
of Mr. George Zelinskas and at the M. Steinthal and Co., Inc.,
Roxboro, North Carolina, under the direction of Messrs. Normand
Levesque, Kenneth Smith, and Richard Warren. The support given by
all personnel at these facilities is especially appreciated.
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records - when more than one), 1lb

‘ Ch = Drag coefficient
3 CDO = Parachute drag coefficient
: D = Parachute drag force (average of two force

D = Drag force of the pilot chute (or cone) and
the parachute bag (or pilot chute bag), 1lb

D = Diameter (design projected) of Supersonic
X-3 pilot chute, in,

DF1 = Design factor, defined by Equation (C-5)

DF2 = Design factor, defined by Equation (C-9)

DO = Hemisflo parachute canopy nominal diameter, ft
DP = Projected diameter of Hyperflo pilot chute, in.
E = Horizontal gore coordinate of hemisflo parachute

canopies, in.

F = Parachute drag forr (average of two force
records - when more than one), 1b

FS = Force resisting sled motion, 1b
Fis = Snatch force (parachute force at line stretch), 1b g
FO = Parachute opening force (that peak force which

occurred during canopy inflation or just after
canopy first full-open), 1lb

H = Vertical gore coordinate of hemisflo parachute
canopies, in.

HRS = Nominal rated breaking strengths of the para-
chute canopy horizontal ribbons - also the
ultimate ioad in the horizortal ribbons, 1lb

KEF = Knot efficiency factor, 0.75
M = Mach number
= Freestream Mach number 3

o

MLS = Mach number at line stretch
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m = Parachute mass (used to represent either: (1)
P the instantaneous mass of the pilot chute and
test parachute bag and its contents, or (2)
the instantaneous mass of the deployment cone,
cone riser, and the pilot chute bag and its
contents), slug

m = Sled mass (used to represent the mass of the
track sled), slug

m = Mass that the break tie is holding, slug

n = Number of parachute suspension lines and ;
canopy gores, 12

OF = Overload factor, 1.5 p
P = Air pressure at the Track, in. Hg ;
. {
PSL = Standard air pressure at sea level, 29.92 in.Hg :
Q = Dynamic pressure, psf
QLS = Dynamic pressure at line stretch, psf
R = Resisting force of the parachute ties, 1lb |
RHO = Air density «t the track, slug/cu ft E
rCD = Maximum variation in drag coefficient i
o} q
{
ry = Maximum variation in drag force, 1lb 2
4
RV = Maximum relative variation in sled velocity, |
percent
S = Reference area, sq ft
SBS = Nominal rated strength of the parachute canopy
skirt band, 1lb i
¥
sd = Separation distance between the sled mass, m_, %
S |
and the parachute mass, mp, ft
SF = safety factor, 1.5 i
cLS = Nominal rated breaking strengths of the parachute i
suspension lines =-also the ultimate suspension
line load, 1b. ;
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FO

LS

SL

VBCS

VBS

Nominal rated breaking strength of a snubber, 1b

Design nominal area of the hemisflo parachute
canopy, 19.635 sq ft

Projected area of the parachute canopy (largest
projected area of the spheroid normal to the
centerline of the suspension line -canopy system),
sq ft

Air temperature at the Track, °R

Maximum allowable nominal rated breaking strength
of a break tie, 1b

Minimum allowable nominal rated breaking strength
of a break tie, 1b

Parachute canopy filling time; the difference
between the time of line stretch, tyg, and

the +ime of canopy first full-open, tpg + Sec

The time of parachute canopy first full-open

(where first full-open is that event where the
value of the canopy projected area during inflation
first equals the steady state projected area),

sec

The time of parachute line stretch, sec.
Standard air temperature at sea level, 518.69°

Nominal rated breaking strength of a vent break
cord, 1b

Nominal rated breaking strength of the parachute
canopy vent band, 1lb

Velocity (speed) of the sled, ft/sec
True airspeed, ft/sec
Velocity (speed) of the wind, ft/sec

Parachute opening shock factor, defined by
X = I'O/(CDOSOQLS)
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8,0
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Axial coordinate of Supersonic - X-3 pilot chute
canopy profile, in.

Separation distance between the leading edge of
the parachute bag and the parachute sled attach-
ment point, ft

Separation distance between the leading edge
of the cone and the parachute sled attachment
point, ft

Translation of the parachute mass, ft
Translation of the sled mass, ft

Translation of the mass that the break tie is
holding, ft

Radial coordinate of Supersonic - X-3 pilot chute
canopy profile, in.

Anagle between the headings of the sled and the
wind, rad

Parachute stability or oscillation angle; the
angle between a ray constructed from the focal
point of the lens of one of the on-board cameras
to the center of the parachute vent and the
optical axis of the camera, deg

Parachute quadrant angle; the counterclockwise
angular displacement of the image of the center
of the parachute vent from the positive axis of
the on-board camera film plane, deg

Hemisflo parachute canopy geometric porosity,
percent

Air density at the Track, slug/cu ft

Standard air density at sea level, 0.002378
slug/cu ft

Indicates the second derivative of a function
with respect to time



SECTION I
INTRODUCTION

This report describes, and documents the results of
a long-term track test program conducted to advance those
technologies associated with parachute operation at very high

dynamic pressures.

First stage type ribbon parachutes, which are used
for the recovery of advanced Air Force weapon systems, are
required to be deployed, and to operate at high Mach numbers
and low altitudes; that is, at high dynamic pressures. The
use of rocket powered, track sleds is a valuable and accepted
method of obtaining parachute deployment, structural, and
operational performance characteristics at high dynamic
pressures. When the Arrowhead sled became operational in
1967, it provided the platform necessary to extend the
dynamic pressure limit of parachute track testing from 2900

to 8000 psf.

The initial objective of the test program was to
determine deployment techniques, performance characteristics,
and structural design criteria for nylon hemisflo parachutes
operating at dynamic pressures up to 6900 psf. With the
advent of the new high-strength, high-modulus Kevlar* para-
chute materials, which offer the potential for a 50 percent
reduction in parachute weight, the objective was expanded to
include comparative analyses of the performance and structural

characteristics of nylon and Kevlar hemisflo parachutes.

Determination of satisfactory parachute deployment
techniques requi.2d some departures from accepted practices.

The early tests experienced deployment problems and the

*
Registered trademark of E.I. DuPont de MNemours and
Company, Inc. for their aramid fiber.




program was interrupted to establish a reliable technique.
An analytical method established a new deployment control
break tie design and the Tomahawk sled was used to check-out
deployment system improvements at Mach 1.2.

Parachute performance characteristics were determined
for nominal deployment Mach numbers of 1.5, 1.8, and 2.2
using the Arrowhead sled. These conditions produced nominal
line stretch dynamic pressures of 2500, 3500, and 6000 psf,
respectively. A 16.5 percent porosity, 5 ft nomiral diameter
hemisflo parachute was selected as the test model.

Structural design criteria of the hemisflo parachutes
were determined by subjecting various strength parachute
components to successively greater parachute opening forces
until the material failure thresholds could be established.

To provide the data for the comparative analyses of
the performance and structural characteristics of nylon and
Kevlar hemisflo parachutes, tests at each ncminal deployment
Mach number were made first using nylon parachutes and then
using equal strength (component for component) Kevlar
parachutes.

In this report: the test program is described in
Section II and in the Appendices, and includes a description
of the Arrowhead sled and an estimation of the uncertainty
of the track test data; the results are presented and
discussed in Section III; and in Appendix C, a deployment
control break tie design calculation technique is introduced
which can be used to determine the number, locations, and
strengths of »arachute break ties that will control the
deployment of nylon and Kevlar hemisflo ribbon parachutes at
supersonic speeds and high uynamic pressures.



SECTION 11
DESCRIPTION OF THE TEST PROGRAM

1. TEST FACILITY

a. The Holloman Track

All parachute tests for this program were conducted
at the High Speed Test Track Facility at Holloman Air Force
Base, New Mexico. The Holloman Track, which is organized as a
division under the 6585th Test Group of the Air Force Systems
Command, is an aerospace ground test facility. 1Its function
is to simulate selected portions of flight trajectories under
accurately programmed, closely contrelled and rigorously
monitored conditions. In track testing at Holloman, the pay-
load and instrumentation are moved along a straight line path
by means of rocket sleds which operate on a set of heavy duty
crane rails. These rails span a total linear distance of
50,788 ft. A detailed description of the Holloman Track, its
facilities, its capabilities, and a discussion of all technical
and management aspects of testing at the track are given in
Re ference 1.

b. The Test Vehicles

The vehicles operating at *the Holloman Track are
referred to as sleds because their interface with the rails
consists of steel shoes ("slippers") which are in sliding
contact with the rails. Two dual rail sleds were used for
this parachute test program, the Arrowhead sled and the
Tomahawk sled.

(I)Anon: The Holloman Track, Facilities and Capabilities,
Air Force Special Weapon Center, 6585th Test Group, Track
Test Division, Holloman Air Force Base, New Mexico, Booklet,
1974.




(1) The Arrowhead Sled

The Arrowhead sled is a solid fuel rocket motor
powered test vehicle specifically designed for parachute
testing at high dynamic pressures. The Arrowhead sled is
designated as IDS 6328 by the Holloman Track and operates
either as a single stage vehicle or, with a noncaptive pusher
sled, as a two-stage test vehicle. Carrying up to five Nike
rocket motors on its captive PDS 6328-1 pusher sled, the Arrowhead
sled is capable of developing a total of approximately
245,000 1b of thrust. In this configuration, the initial
weight of 11,700 1b can be accelerated to a speed of Mach
1.89 at rocket motor burnout. Burnout weight is approximately
7,900 1b and the empty weight of the Arrowhead sled is
approximately 4,100 1b. With the addition of the PDS 6328-2
first-stage noncaptive pusher sled containing five Nike rocket
motors, the Arrowhead sled can be accelerated to Mach 2.55 at
motor burnout. A more detailed description of the Arrowhead
sled is given in Appendix A. Figure 1 shows two views of the
Arrowhead sled with both pusher sleds on the track prior to
test. A three-view sketch giving basic overall dimensions of

the Arrowhead sled is shown in Figure 2.
(2) The Tomahawk Sled

The Tomahawk sled is also a solid fuel rocket
powered parachute test vehicle which operates either as a
single-stage or as a two-stage vehicle. 1t is designated as
IDS 6301 by the Holloman Track. For this test program, eight
2.2 KS 11,000 rocket motors, which develop approximately
90,000 1b of thrust for 2.2 sec, were carried on the Toma-
hawk sled and four 2.2 KS 11,000 rocket motors were carried
on the noncaptive IDS 5802-1 pusher sled. 1In this configuration,
the initial weight of 7,800 1b can be accelerated to approxi-
mately Mach 1.3 at rocket motor burnout. The burnout weight is
about 6,200 1b and the empty weight of the Tomahawk sled is



Figure Photographs of the Arrowhead Sled with Pusher Sleds.
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about 5,300 1b. More detailed descriptions of the Tomahawk
sled are found in References 2 and 3. Figure 1 gshows

two vicws of the Tomahawk and pushers sleds on the track priorv
to test and a three-view sketch giving basic overall dimensions

of the Tomahawk slcd is shown in Figure 4.

(2\Pederson, Paul E.: Study of Parachute Performance
at Low Supersonic Deployment Speeds; FEffects of Changlng Scale
and Clustering, Alr Force Aeronautical Systems Division
Technical Report 61-186, (AD 267 502), July 1961.

(3)Pedorson, P.E.: Study of Parachute Performance and
Design Parameters for High Dynamlc Pressurce Opmatmon, ALY
Force Flight Dynamics Laboratory Report AFFDL-TDR-G64-ob,
(AD 607 036), May 1964.
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2. PARACHUTE MODELS

One parachute type was used for all tests conducted in
support of this program, a 5 ft nominal diameter hemisflo
ribbon type parachute. The basic differences among the para-
chute models were the material strengths and material type-
nylon and Kevlar. Sketches of the general arrangement of
the hemisflo parachutes are given in Figure 5. Detailed
descriptions and design of the test parachutes are given in

Appendix B.

a. Configuration Selection

(1) Parachute Type

The hemisflo parachute was selected for study
under this program to provide an extension of the studies with
hemisflo parachutes at lower dynamic pressures (Reference 3)
and to provide supersonic, high-dynamic pressure data on a
nonreefed model of the reefed hemisflo parachute which was
undergoing flight tests for the Air Force Flight Dynamics

Laboratory (Reference 4).

The hemisflo parachute has exhibited satis-
factory performance characteristics at supersonic speeds and
its ribbon construction provides a weight efficient canopy
surface that will withstand the large canopy stresses generated

at high dynamic pressures.
(2) Canopy Size

Selection of the hemisflo canopy size was

based upon estimated parachute performance, maximun sled

(4)Bloetscher, F.: Aecrodynamic Deployable Decelerator
Performance FEvaluation Program, Phase II, Air Force Flight
Dynamics Laboratory Report, AFFDL-TR-67-25, (AD 819 915),
April 1967.
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velocity (M 2.55), maximum parachute load allowed to be

applied to the sled (150,000 1lb), and a safety factor of 1.5).
The 5 ft nominal diameter hemisflo parachute canopy chosen in
this manner for the test program gave a slightly positive

margin of safety.
(3) Canopy Porosity

A hemisflo canopy porosity in the range from
14 to 18 percent was considered desirable for use on this test
program. A 14 percent porosity hemisflo parachute was chosen
for the supersonic flight test program documented in Reference 4
and an 18 percent porosity hemisflo parachute performed
satisfactorily during wind tunnel tests at Mach numbers of 1.8,
2.0, and 2.2 (Reference 5).

A 5 ft diameter hemisflo parachute canopy
with a geometric porosity of 16.5 percent porosity was designed

for this test program; see Appendix B.
(4) Riser Length

Riser lines were used to position the canopy
downstream of the strong shock waves generated by the Arrowu-
head sled. These shock waves for Mach numbers 2.0 and 3.0 are
shown in Figure A-3 of Appendix A. Riser lines 20 ft long
were required for tests at Mach 1.5 and riser lines 30 ft long

were used for tests at Mach 1.8 and 2.2.

b. Hemisflo Design

The designs of all hemisflo parachutes were the same

ana were in accordance with the method outlined on pages

(S)Reichenau, D.E.A.: Aerodynamic Performance of Various
Hyperflo and Hemisflo Parachutes at Mach Numbers from 1.8 to 3.0,
Arnold Engineering Development Center Report, AEDC-TR-65-57,

(AD 358 325), March 1965.
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517 through 522 of the "Parachute Handbook" (Reference 6),

T TR

which gives sample calculations and design equations for

hemispherical canopies.

Physical details and dimensions of the hemisflo
parachutes are given in Table 1 and the gore coordinates are
given in Figure 6. Measurements were taken on the canopy
under nominal (less than 40 1lb) tension within 15 sec after

application of the nominal tension.

E c. Parachute Construction

The parachute canopy gores were assembled using the
continuous ribbon technique. Each ribbon and vent and skirt
band was continuous around the canopy, passing between the
radials of each gore with a single splice between the radials.
The locations of the splices were staggered around the canopy.
Ribbon spacing was maintained by one vertical ribbon on the

centerline of each gore.

An integral suspension line/riser arrangement with
restraining keepers was used. The suspension lines also passed
over the canopy and served as the radials and the vent lines.
Attachment loops were sewn at the end of each of the twelve

riser lines.

Although significant difficulties were expected
during the fabrication of the parachutes made from the new
high strength, low modulus Kevlar materials, none were

experienced.

(G)Anon. (American Power Jet Co.): Performance of and
Design Criteria for Deployable Aerodynamic Decelerators, Ailr
Force Flight Dynamics Laboratory, Technical Report ASD-TR-61-579,
(AD 429 971), December 1963.
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TABLE 1

PHYSTCAL DETAILS AND DIMENSIONS OF THE
NYLON AND KEVLAR HIEMISFLO PARACHUTES

Rk~ o L

E Nominal diameter, D, (ft) 5.0
Canopy area, So (sq ft) 19.635
Geometric porosity, Mg (percent) 16.5
Number of gores 12

; Number of suspension lines 12

g Suspension line length (in.) 100

% Number of horizontal ribbons 11

' Number of vertical ribbons per gore 1

? Separate vent pand _ h Yes

% Separate skirt band Yes

j Number of vent lines 6

4 Finished vent line length (in.) 5.0

% Gore width at vent (in.) 1.62

’ Finished gore width at vent (in.) 1.43
Finished gore height (in.) 31.9
Finished gore width at skirt (in.) 9.3
Finished skirt circumference (in.) 112




— RADIAL CENTERLINE
==—GORE CENTERLINE
/ H tE
= 1 -5.8 | 4.67
T \ 2.90
VENT BAND = ol a9
: 3.19| 4.83
i 25.90 I
I 6.40 | 4.62
' 0.54
HORIZONTAL u I | ¢ r (TYP) 9.60| 4.28
RIBBON ” 'h * [
1 1 12.80 | 3.80 I
I B
3 16.00 | 3.2I
n i +H
19.20 | 247
A —
VERTICAL ! 1 T ‘ -H 22.30 ! 1.75
RIBBON 5.98
: 1 25.80 | 0.95
i
28.80 0
SKIRT BAND E
= 9.34
NOTE : ALL DIMENSIONS IN INCHES 3
i
Figure 6. Gore Coordinates of the Nylon and Kevlar

Hemisflo “arachute Canopies.
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d. Physical Characteristics

The physical characteristics of the nylon and Kevlar
parachutes are listed in Tables 2 and 3, respectively.

(1) Component Strengths

The major structural components were analyzed to
estimate strength requirements and select materials. The
overall strength requirements for the suspension lines, horizontal
ribbons, and skirt and vent bands were estimated by applying
design factors to the expected maximum parachute opening forces.
It was expected that the range of material strengths chosen for
these components (listed in Tables 2 and 3) would be
sufficiently large such that the ultimate loads in these
components could be determined from the tests. That is, the
material strengths were selected such that, for a given opening
force, a material of one strength might be expected to fail
while the next higher strength material would be undamaged.

(2) Material Characteristics

The general characteristics of the materials
selected for the various components of each test parachute
used on this test program are summarized in Tables 2 and 3.
The detailed characteristics of the nylon materials can be
found in the applicable Military Specifications. The con-
struction and characteristics of the Kevlar materials are
summarized in Table B-1 of Appendix B.

(3) Parachute Weights

Since Kevlar materials weigh considerably less
than nylon materials of comparable strength, the weights of
all parachutes were recorded to document the weight savings
for constructed parachutes. These weights are included in
Tables 2 and 3 and are also listed in Table 4.
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Table 4 also presents a tabular comparison
of the weights of nylon and Kevlar parachutes as functions of
canopy ribbon and parachute suspension line strenqgths. This
comparison is also graphically illustrated in Fiqure 7. All
Kevlar parachute canopies weighed less than 56 percent of
comparable strength nylon canopies. For the three stronger
parachutes the weight savings of the overall Kevlar parachutes
were less than the weight savings of the Kevlar canopies. This
indicates that the Kevlar horizontal and vertical ribbons
contribute more to the weight savings than do the Kevlar

suspension and riser lines, for these three stronger parachutes.
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3. TEST TECHNIQUE

The Holloman Track prepared an Operations Plan (OPLAN)
for each test run series; that is, one OPLAN for each sled
configuration and desired parachute deployment Mach number.
The OPLAN included: (1) test administrative information, (2)
track station locations for events, (3) electronic instrumenta-
tion support requirements, (4) electronic data reduction
requirements, (5) photographic instrumentation support require-
ments, (6) sled and track preparation instructions, (7) run

profile data, and (8) a master countdown checklist.

On the day before a test, the track and sled were pre-
pared as specified in the OPLAN and the test parachute was
installed on the sled. On the day of the test, the count-
down proceeded in accordance with the master countdown check-
list. The sled was fired and moved down the track; the required
test data was gathered throughout its run. The test parachute
was deployed and released at prescribed track locations.

After the run, the sled and test parachute were recovered.

a. Track Preparation

Track preparation included: (1) the installation of
full slippers on the sled, (2) the installation of the required
number of water dams for braking the sled, (3) the erection
of a synchronization light stand which provided an event-
time correlation for the on-board cameras, and (4) the
installation of screenboxes which are intercepted by sled-
borne knife blades, and which conduct an electric current
from the ground to the sled as long as the knife blades are
in contact with the screen. Currents from the screenboxes
were used to stage the rocket motors, turn off the on-board
cameras, fire the parachute deployment and releasc

mechanism squibs, and flash the camera syncronization light.
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4 b. Parachute Installation

The packed test parachute was inserted into the
parachute storage compartment of the sled and the riser
lines and cone riser were attached to the parachute attachment/
deployment/release mechanism. The parachute attachment cover
was then fastened in place on top of the storage compartment.
Detailed descriptions of the parachute attachment, deployment,
and release components including parachute packing and
installation instructions and photographs are given in

Appendix C. A photograph of a test parechute installed on

the Arrowhead sled is presented in Fiqure 8.

c. Sled Preparation

The sled, with the parachute and camera box installed,
was positioned onthe track and attached to the slippers.
Then the cameras, rocket motors, ignitors, and pyrotechnic
actuators were installed. All wiring from the knife blades
to the actuators and ignitors, and all other internal sled
instrumentation wiring, was connected. Finally, all sled

access doors were closed and the sled was armed.

d. Parachute Deployment

After ignition of the rocket motors, the sled accel-

crated down the track. Shortly after burnout of the last stage

of rocket motors, the knife blades on the sled intercepted the
parachute deployment screenbox. This screenbox was located

at that track station where it was predicted that the sled
would have the speed desired for parachute deployment initia- ;
tion. Flectrical current from the screenbox fired the drogue :
gun squibs in the parachute deployment mechanism. The resulting
gas pressure sheared the drogue gun mortar pin and propelled

the deployment cone downstream from the sled. Cone drag and
momentum were transferred as tension forces through the cone

riser to the test parachute restraining strap release cables

23




Fiqure 8. Photograph of the Test Parachute Installed
on the Arrowhead Sled - Test 6P-Hl.
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and to the pilot chute bag. After the restraining strap was
released, the cone pulled the pilot chute and bag about six
feet downstream from the sled, at which point the pilot chute
exited the bag and inflated. The pilot chute then pulled the
test parachute and bag to line stretch of the parachute, at
which point the canopy exited the bag and inflated. Pilot
chute and test parachute were prevented from prematurely
exiting their deployment bags by line and canopy ties of
appropriate strengths. Detailed descriptions of the deploy-
ment system components used for each test and the calculation
method used for determining the strengths of the ties are given
in Appendix C. A sketch of a typical deployment sequence
showing the major components is presented in Figure 9 and
photographs of an actual deployment sequence are presented

in Figure 10.

e. Parachute Release

After all parachute performance data had been gathered
and before the sled entered the water dams, knife blades on
the sled intercepted the parachute release screenbox. Electric
current from the screenbox fired the parachute release mechanism
squibs. The parachute was released from the sled to prevent
it from being damaged during sled recovery.

f. Sled Recovery

After parachute release, sled-borne knives intercepted
a screenbox which turned off the on-board cameras. The sled
then entered the water dams. Sled deceleration resulting
from its aerodynamic drag and frictional resistance with
the rails then became augmented by water braking. The braking
force was generated by momentum transfer from the moving sled
to water, which was scooped up from the dams and ejected into
the air. The braking force was controlled by adjusting the
number and height of the frangible dams.

as
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s Photographs of the Deplovment Seauence
From Test oP-G1,
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After the sled came to a stop, the screenboxes were
disarmed and the sled, pusher, slippers, screenboxes, and all

parachute components were removed from the track.
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4. INSTRUMENTATION AND DATA GATHERED

a. Meteorological Readings

The Holloman Track is located at elevations above
mean sea level that gradually increase from4,058 ft at track
station zero to 4,099 ft at track station 50,770. The atmos-
pheric conditons which existed just prior toc a test run were
obtained from the Holloman Air Force Base weather station

which is at an elevation cf 4,092 ft above mean sca level.

The meteorological readings recorded for each test
were wind direction, wind speed, temperature, (absolute)

barometric pressure, and relative humidity.

b. Electronic Instrumantation

(1) On-Board Telemetry

Radio frequency telemetry, of the FM/FM type,
was used to transmit sled and parachute performance data.
Two channels were used for the sled Velocity Measuring
System (VMS), two were used for the parachute tensiometer, and

one channel was used to monitor the on-board telemetry battery.

Track-side decommutation, data recording, repro-
duction, and duplicating was done on magnetic tape, direct
writing oscillographs, and stylus recorders at the Midway data

acquisition and recording building.
(2) Sled Performance

An electro-optical VMS determined sled position
as a function of time by means of track-fixed light beam
interrupters. The interrupters consisted of metal plates which
were positioned at 13 ft intervals along the track. Real time
measurements were obtained from a sledborne sensing head which
provided a light beam between a light source and a photo-
transistor. The beam was interrupted each time the sensing

head passed an interrupter. The ouatput was a series of pulses

29
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which was transmitted to Midway by telemetry. The time versus
position data obtained this way was processed by computer to
yield smoothed and unsmoothed sled position, velocity, and
acceleration as functions of time. The smoothed sled velocity
data was then combined with the meteorological data to derive
relative wind true airspeed, Mach number, and dynamic pressure,
also as functions of time.

Two back-up and quick-look type velocity
measuring systems were also used to evaluate sled performance.
Both systems consisted of a series of sensors positioned in
holders along the track and spaced at distances of 208 ft from
each other. 1In one system the sensors were thin balsa wood
"breaksticks" which were coated with aluminum paint to provide
a conductive surface. Fach stick was broken by direct contact
with the sled, generating an electric pulse by interrupting
the current through the stick. In the other system the sensors
were magnetic. After being set, these magnetic sensors pro-
vided a single electric pulse when the first steel slipper of the
sled passed close by. The signals from these sensors were
transmitted to Midway by cables and were recorded as functions
of time. This data was also processed to yield sled position,
velocity, and acceleration versus time.

(3) Parachute Forces

Forces generated by the test parachute were
measured by a tensiometer which formed part of the parachute
attachment and release mechanism. Two conventional strain
gages, connected in bridge configurations, were employed
as the sensing elements on a steel tension link. Outputs
from both sensing elements were transmitted to Midway by
telemetry and recorded on magnetic tape and by a direct print
oscillograph. The rated full-scale range of the tensiometer
was 100,000 1b. The approximate full-scale output of each
sensing element was 25 millivolts.
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During the test program, drag forces were trans-
mitted through various low pass filters whose band widths ranged
from 220 to 2100 Hz. However, on each test there was one drag
force channel with a filter of at least 660 Hz, The maximum
frequency responses of the galvanometers used in the oscillographs
always exceeded the frequencies of the filters. For example,
on Test 6P-E6, the filters were 220 and 2100 Hz and the
galvanometer response frequencies were 1000 and 3000 Hz,
respectively.

c. Optical Instrumentation

A large number of different types of cameras were
used during this program to record sled and parachute perform-
ance characteristics and test operations. These cameras were
used for three basic purposes: (1) to provide backup data of
sled and parachute performance, Metric Optical Instrumentation;
(2) to provide primary data for engineering analysis of para-
chute performance, Engineering Optical Instrumentation; and
(3) to provide Documentary Photography. A listing of the
cameras used during this test program is presented in Table 5.

(1) Metric Optical Instrumentation

Ribbon frame type cameras, operating at 90 frames
per second, were employed at selected permanent metric optical
instrumentation sites alongside the track for this test program.
Each camera image related sled and parachute position to precisely
surveyed target poles, five to seven of which were within the
field of view of each camera site. These cameras were used as
a backup system to determine sled and parachute performance
characteristics.

(2) Engineering Optical Instrumentation

Maximum use was made of the trackside and
sledborne motion picture coverage provided by the Holloman
Track to acquire the primary data for engineering analysis of

parachute performance.
31
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Two on-board cameras, track designations
SX-1 and SX-2 and operating at 1000 and 500 frames per second,
respectively, were used to obtain test parachute oscillation
angle, quadrant angle, and frontal (projected) area as functions
of time. Reference dimensions used to reduce the camera
coverage data to the desired parachute performance parameters
were obtained from photographs taken by these cameras of a

ground-fixed reference target board.

Test parachute deployment events and trajectories
were determined from fixed trackside motion picture cameras
which were located at those track stations where parachute
deployment was expected to occur. Reference dimensions used
to obtain deployment cone and parachute bag separation distances
from the sled as functions of time were determined from a

target grid painted on the sled and from known sled dimensions.

A few tracking cameras were also used to provide

motior picture coverage of the entire sled run.
(3) Documentary Photography

Pre and post test still photography was employed
on each test to provide documentation of the condition of the
deployment aids and test parachute during and after installation

and after the test run.

Documentary tracking motion picture coverage from

on-board the range safety helicopter was obtained on some tests.

d. Timing
Most data collected was correlated by recording time
bases and codes which indicated elapsed time. All time bases

and codes met Inter-Range-Instrumentation Group (IRIG) standards. :

One master clock generated all times. Signal distribution for
event timing was routed to electronic and photo-optical é

instrumentation and recording locations.
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s

The photo-optical data (such as from the on-board)
cameras) which did not have each camera image marked in coded
form was marked with pulses of known frequencies. Events
recorded by these cameras were then correlated to the IRIG
coded time by use of simultaneous recordings of a light flash
from atop the synchronization light stand and an event mark

on the oscillograph record.
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5. DATA REDUCTION AND PRECISION

The estimated maximum uncertainties of all measured and
derived data parameters are listed in Table 6. Discussion
of the methods used for data reduction and uncertainty

ostimations are given below.

a. Time

According to Reference 1, all time bases and codes
which meet TIRIG standards were recorded with an accuracy of
50 microscconds. Photo-optical data which was marked with
pulses of known frequency (usually 1000 Hz) wags ostimated
to have provided times which were accurate within 0.0005 sec.
Times obtained from all photo-optical instrumentation were
corrected for the offset of the location of the timing light

generator from the event frame, where applicable.

b. Mecteorological Data

The estimated maximum uncertainties of the meteoro-
logical readings of temperature, pressure, wind speed, wind
direction, and relative humidity were taken as zl1 of the last
significant fiqure reported for these readings by the Holloman

Air Force Base weather station.

The air density is an indirect measurement which
results from a calculation involving the direct measurements
of temperaturce and barometric pressure and standard values

for sea level temperature, pressure, and density. That 1is,

(1) 1

(v) |
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o

=)

3|0
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wn
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where:
p = Standard air density at sea level, 0.002378
SL
slug/cu ft
T = Standard air temperature at sea level, 518.69°R




k| TABLE 6

} i
E PRECISION OF THE DATA
f Estimated
) Maximum
Typical Uncertainty
Data Parameter, Units Value (+ and -)
TIME
IRIG bases and codes, sec 36.54186 0.00005
From pulses of known frequency, sec 0.1779 0.0005
METEOROLOGICAL DATA
Temperature, °F 67 1
Barometric pressure, in. Hg 25.635 0.001
Wind speed, kno<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>